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OUTLINE

• Distinguishing features of ecloud issues for HIF
• Our plan for self-consistent modeling
• Example with secondary-electron sources
• Electron effects on ions: simulations with specified

electron distributions
• Preliminary results for averaged electron dynamics
• Summary

Related papers:
Molvik et al (Monday p.m.)
Vay et al (Tues. p.m.)
Stoltz et al (next paper)
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Artist’s Conception of an HIF Power Plant on a few km2 site
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HIF accelerators have distinguishing features that
impact electron cloud issues
Compared to other accelerator applications:

• Many common issues and concerns, but also application-
specific features

• Distinguishing aspects of HIF accelerators (U.S. main line with
magnetic quadrupole focusing):
– Linac with high line charge density

– Induction accelerator --
• hard to clean beam pipe ⇒ large neutral emission coefficient at

pipe wall (> 103)
• Beam pipe only in quad magnets  ⇒ scrape-off only in quads

– Economic mandate to maximally fill beam pipe

– Large fraction of length occupied by quadrupoles (>50% at
injector end)

– Long(ish) pulses -- multi-µs at injector end
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Consequences 1

• Linac, so multiturn resonance not an issue
– But long pulse ⇒ still instability if e-e SEY > 1

• Electrons largely confined to the quadrupole in which they are
born, and electron density smaller in gaps than in quads;
consequences of:
– Beam pipe only in quads; strongly magnetized electrons

– Time to drift out of a quad ~ pulse durations

– Accelerating gaps between quads, which enable electrons to
overcome space charge potential

Important implications for potential instabilities.
• Filling pipe as much as possible ⇒ ion scrape-off major source

of electrons
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Consequences 2: Electrons from gas released at walls in
quads dominate

• e- from ionization of neutrals released
from walls dominates for long (multi-µs)
pulses.
– Born trapped by beam potential

• Bounce radially
• Drift axially
• Acquire enough energy in gap to escape
• Hence τe ~ time to drift through 1 quad

• For shorter pulses: secondary electrons
from ion bombardment
– Nominal lifetime 1 transit (during beam

flattop)
– e- from scrapeoff of beam ions: mainly on

field lines that stay close to wall.
– For small fraction born on field lines that

penetrate deep into interior, collisionless
pitch-angle scattering (nonadiabaticity) can
make lifetime much longer
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Toward a self-consistent model of electron effects

• Plan for self-consistent electron physics modules for WARP

• Key: operational;  implemented, testing; partially implemented; offline
development
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Example of current capability: secondary electrons
from primary and secondary ion bombardment

• WARP ion slice simulation, 400,000 ions
– 100 lattice-period transport system (no acceleration)

– Misaligned magnets (500 µm) to exaggerate beam scrapeoff

• Gather data for ions impacting wall (6282 ions), and calculate:
– Secondary electrons produced (from simple fit to Molvik et al

data)

– Scattered ion population (3629 ions), from TRIM Monte-Carlo
code

• Follow the scattered ions in 3-D Warp until they next impact
wall.

• Calculate secondary electrons produced by those ions

• Follow dynamics of electrons produced by primary and
scattered ion impacts with 3-D WARP; accumulate electron
charge density
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Calculation of ne from secondary electrons shows
importance of following scattered ions
• Full-orbit calculations of

electrons born as secondaries
from impact of lost beam ions
– Based on initial ion-wall

impacts: cloud confined to
wall near beam ellipse tips

– Dramatic difference if we
follow scattered ions and add
in the secondary electrons
THEY produce
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Ion simulations with legislated electron clouds show level of
acceptable density and highlight areas for concern

• Perform ion simulations with legislated negative charge
distributions to mock up electrons
– Const ne

– Random cloud variations
– Sinusoidal cloud variations, with period chosen to match a

beam natural mode
• Breathing
• Centroid oscillations (dipole mode)
• Elliptical distortion oscillations (quadrupole mode)

– Types of electron cloud variations studied (in all cases the
perturbation is axially constant within a quadrupole, and
varies from quad to quad):
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Types of electron cloud perturbations specified

uniform amplitude

radial offset
(random direction)

radial shape variation

ramp (rotating) ellipticity
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20% constant ne has little effect
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20% mean, 0-40% random ne produces significant
beam loss, envelope growth, halo
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20% ne with random transverse offsets produces
intermediate beam loss, halo, emittance growth
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20% ne with random radial shape variation somewhat
worse than const but much better than random amplitude

C
ur

re
nt

 (
A

)

E
dg

e 
em

m
tta

nc
e

X
,y

 e
nv

el
op

e 
(m

)

Lattice periods s(m)

s(m)

0.81

0.8085



R. Cohen, PAC03, TOAA010    -16-
The Heavy Ion Fusion Virtual National Laboratory

RESONANT perturbations are more damaging: 0-10%
sinusoidally varying ne resonant with breathing mode
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RESONANT perturbations are more damaging: 0-10%
sinusoidally varying ne resonant with breathing mode
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Ecloud offset (10% ne) displaces ion beam enough for
significant scrapeoff but little halo or  emittance growth
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Sinusoidal radial shape variation (10% ne, resonant with
breathing) less effective than amplitude modulation
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Ellipticity resonant with q-pole oscillation (10% ne) produces
small beam loss but more bulk emittance growth

C
ur

re
nt

 (
A

)

E
dg

e 
em

m
tta

nc
e

X
,y

 e
nv

el
op

e 
(m

)

Lattice periods s(m)

s(m)

0.81

0.79

1

2



R. Cohen, PAC03, TOAA010    -21-
The Heavy Ion Fusion Virtual National Laboratory

These resonant perturbations are potentially a source of
instability
• Ion envelope breathing in phase with e- oscillations

• Envelope peaks will produce more electrons

• Electrons ~ immobile in beam direction due to quadrupoles

• Perturbation will grow

• Doesn’t require const wavenumber (acceleration allowed)
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More on instability

• Crude, semi-empirical growth rate (assumptions: coasting beam; wall
gas desorption dominates e- production; neglect neutral time of flight;
resonant beam loss ∝ ne):

with A=area, κn = neutrals released per incident ion, N=nV with V=beam
volume

• Yields exponential growth with e-folding time:

• Growth limited by:
– Velocity tilt

– Beam current loss

– Finite neutral transit time
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~ 3 µs for simulation parameters (~ τb)
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Self-consistent e-i simulation requires technique to
bridge timescales
• Need to follow electrons through strongly magnetized and

unmagnetized regions ⇒ need to deal with electron cyclotron
timescale, ~ 10-11 sec.

• Ion timescales > 10-8 sec.

• Algorithm to bridge: interpolation between full-electron
dynamics (Boris mover) and drift kinetics (motion along B plus
drifts).

• Properly chosen interpolation allows stepping electrons on
bounce timescale (~10-9 sec) yet preserves:
– Drift velocity

– Parallel dynamics

– Physical gyroradius
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Interpolated mover: first tests meet expectations
• Compare full orbit to interpolated mover (10x dt).

• Single orbit comparisons of some regular and nonadiabatic (chaotic)
orbits:
– Good agreement on drift & bounce velocity, orbit size for regular orbits

– Expected non-agreement for chaotic orbits (expect similar statistics;
not yet tested).
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Summary/conclusions

• High current, fill factor, pulse length, unclean walls of HIF induction
accelerators ⇒ dominant electron sources are ionization of neutrals
released from walls
– except ion-produced secondary electrons for short pulse expts or

after drift compression

• Developing self-consistent modeling capability for e-cloud formation,
dynamics, effects on ions

• Simulation of dynamics of secondary electrons from ion impacts
shows importance of keeping scattered ions

• Simulation of ion evolution with various model electron distributions
shows:
– effect of random amplitude variations > random offsets > const ne

– Resonant sinusoidal perturbations more potent, especially amplitude
resonant with breathing mode.

– Ion beams surprisingly robust: 20% const ne little effect; several
percent resonant perturbation needed for significant impact

– Possible instability (mild) associated with resonant perturbations




